Chain Based RNN for Relation Classification
نویسندگان
چکیده
We present a novel approach for relation classification, using a recursive neural network (RNN), based on the shortest path between two entities in a dependency graph. Previous works on RNN are based on constituencybased parsing because phrasal nodes in a parse tree can capture compositionality in a sentence. Compared with constituency-based parse trees, dependency graphs can represent relations more compactly. This is particularly important in sentences with distant entities, where the parse tree spans words that are not relevant to the relation. In such cases RNN cannot be trained effectively in a timely manner. However, due to the lack of phrasal nodes in dependency graphs, application of RNN is not straightforward. In order to tackle this problem, we utilize dependency constituent units called chains. Our experiments on two relation classification datasets show that Chain based RNN provides a shallower network, which performs considerably faster and achieves better classification results.
منابع مشابه
Multiple Range-Restricted Bidirectional Gated Recurrent Units with Attention for Relation Classification
Most of neural approaches to relation classification have focused on finding short patterns that represent the semantic relation using Convolutional Neural Networks (CNNs) and those approaches have generally achieved better performances than using Recurrent Neural Networks (RNNs). In a similar intuition to the CNN models, we propose a novel RNN-based model that strongly focuses on only importan...
متن کاملRelation Classification: CNN or RNN?
Convolutional neural networks (CNN) have delivered competitive performance on relation classification, without tedious feature engineering. A particular shortcoming of CNN, however, is that it is less powerful in modeling longspan relations. This paper presents a model based on recurrent neural networks (RNN) and compares the capabilities of CNN and RNN on the relation classification task. We c...
متن کاملSimple Customization of Recursive Neural Networks for Semantic Relation Classification
In this paper, we present a recursive neural network (RNN) model that works on a syntactic tree. Our model differs from previous RNN models in that the model allows for an explicit weighting of important phrases for the target task. We also propose to average parameters in training. Our experimental results on semantic relation classification show that both phrase categories and task-specific w...
متن کاملRelation Classification via Recurrent Neural Network
Deep learning has gained much success in sentence-level relation classification. For example, convolutional neural networks (CNN) have delivered competitive performance without much effort on feature engineering as the conventional patternbased methods. Thus a lot of works have been produced based on CNN structures. However, a key issue that has not been well addressed by the CNN-based method i...
متن کاملSound Signal Processing Based on Seq2Tree Network
Most state-of-the-art solutions to sound signal processing tasks such as the speech and noise separation task and the music style classification task are based on Recurrent Neural Network (RNN) architecture or Hidden Markov Model (HMM). Both RNN and HMM assume that the input is chain-structured so that each element in the chain is equally dependent on all its previous units. However in real-lif...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015